Numerical study of time-splitting and space–time adaptive wavelet scheme for Schrödinger equations
نویسندگان
چکیده
منابع مشابه
Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes
In this paper we study the performance of time-splitting spectral approximations for general nonlinear Schrödinger equations (NLS) in the semiclassical regimes, where the Planck constant ε is small. The time-splitting spectral approximation under study is explicit, unconditionally stable and conserves the position density in L1. Moreover it is time-transverse invariant and timereversible when t...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملNumerical study of fractional nonlinear Schrödinger equations.
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the ...
متن کاملNumerical Continuation for Nonlinear SchrÖdinger Equations
We discuss numerical methods for studying numerical solutions of N-coupled nonlinear Schrödinger equations (NCNLS), N = 2, 3. First, we discretize the equations by centered difference approximations. The chemical potentials and the coupling coefficient are treated as continuation parameters. We show how the predictor–corrector continuation method can be exploited to trace solution curves and su...
متن کاملnumerical solution for one-dimensional independent of time schrödinger equation
in this paper, one of the numerical solution method of one- particle, one dimensional timeindependentschrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function v(x).for each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. the paper ended with a comparison ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2006
ISSN: 0377-0427
DOI: 10.1016/j.cam.2005.03.086